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Described is a pattern matching system for matching a test
image with a 3D template. The system is initiated by gener-
ating a library of templates (each individual template is a
three-dimensional array, with each pixel in the array repre-
senting a value at a particular x, y, and z coordinate). Each
column of pixels along one axis (e.g., z) is converted into a
neural input. Each neural input is fed through a neural net-
work to establish a delayed connection between each neural
input and output neuron and to generate a template neural
network. Separately, a test image is converted into neural
inputs. The neural inputs of the test image are input the
template neural network to generate output neurons. The
output neurons are evaluated to identify a location of the
template in the test image.
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SYSTEM AND METHOD FOR FAST
TEMPLATE MATCHING IN 3D

CROSS-REFERENCE TO RELATED
APPLICATIONS

This is a Continuation-in-Part application of U.S. patent
application Ser. No. 13/358,095, filed on Jan. 25, 2012, and
entitled. “Neural Network Device with. Engineered Delays
for Pattern Storage and Matching,” which is a Non-Provi-
sional Application of U.S. Provisional Application No.
61/501,636, filed on Jun. 27, 2011 and entitled, “Neural Net-
work Device with. Engineered Delays for Pattern Storage and
Matching.”

This is ALSO a Non-Provisional Application of U.S. Pro-
visional Application No. 61/589,686, filed on Jan. 23, 2012,
and entitled, “Process and Method for Fast Template Match-
ing in 3D Images.”

FIELD OF INVENTION

The present invention relates to a pattern matching system
and, more particularly, to a system for finding a matching 3D
template in a stack of images.

BACKGROUND OF INVENTION

Pattern matching is a technique by which a test image is
matched to a template or stored image. This process is typi-
cally referred to as template matching. Normalized cross-
correlation (NCC) is the standard for template matching in
images. Until recently, correlations have been used in novel
template-matching devices, such as those described by TI
Kaneko and O Hori in U.S. Pat. No. 7,085,418, titled, “Tem-
plate matching method and image processing device.” NCC
can find exact matches; however, its disadvantage is the com-
putational complexity. In other words, NCC scales as the
volume of the image times the volume of the template. Thus,
for high-density integrated circuits (ICs), the search time can
be prohibitive (e.g., greater than 1000 hours). Despite this
limitation, NCC has been hardly improved upon: typical
speed-ups are slightly (about 2x), as was described by L. Di
Stefano and S. Mattoccia, in “A sufficient condition based on
the Cauchy-Schwarz inequality for efficient Template Match-
ing”, IEEE Int. Conf on Image Processing (ICIP 2003), Sep.
14-17, 2003.

To speed up cross-correlation, Fourier transformations
(FT) have been used (see L. G. Brown, “A survey of image
registration techniques,” ACM Comput Surv., vol. 24, no. 4,
pp- 325-376, 1992). FT can greatly reduce the time to com-
pute the correlation between test image and template. How-
ever, computing the FT on the test image requires N log,(N)
operations, where N is the number of pixels. Thus, for large
images, which are typical for ICs, this computation alone can
be more expensive than the total computation required for our
invention.

Another group of methods, iterative search methods (e.g.,
swarm vision as described by Owechko et al. in U.S. Pat. No.
7,599,894), do not search exhaustively in the test image;
instead, they iteratively move the template location within the
test image until a high correlation is achieved. These methods
perform well if the test image is sufficiently blurry such that
a gradient exists that points in the direction of higher corre-
lation. However, for exact matching, as in circuit leaf-cell
search, such methods are not optimal.

The present invention is also related to pattern recall in
recurrent neural networks (RNN), such as those described by
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2

J.J. Hopfield in “Neural networks and physical systems with
emergent collective computational abilities”, Proceedings of
the National Academy of Sciences of the USA, vol. 79 no. 8
pp. 2554-2558, April 1982, which is incorporated herein by
reference. As in the present invention, the neural networks
first store template patterns. Different from the present inven-
tion, however, these patterns are stored by adjusting weights
of'neural connections instead of delays. In pattern recall from
RNNs, a pattern is first fed into the input neurons, and then,
the network’s dynamics converge to a related stored pattern.
This process is also called pattern association. A disadvantage
of this process is the low speed. Computing the network
dynamics is an iterative process. Moreover, such networks
alone do not provide an efficient mechanism to feed the whole
test image into the network. Therefore, as in cross-correla-
tion, every test image location would need to be compared
with the template image. As result, using RNNs for pattern
matching would be slower than using normalized cross-cor-
relation.

As evident above, the state of the art in image template
matching is normalized cross-correlation, which has not been
significantly improved upon for several decades. Thus, con-
tinuing need exits for a pattern matching system with a sub-
stantial speed improvement over existing and traditional sys-
tems.

SUMMARY OF INVENTION

The present invention is directed to a system for pattern
matching by finding a matching 3D template in a stack of
images. The system comprises one or more processors and a
memory, with the memory having instructions encoded
thereon for causing the one or more processors to perform a
variety of operations as listed herein. Such operations include
converting a test array into neural inputs; receiving the neural
inputs into a template neural network to generate output neu-
rons; and evaluating the output neurons to identify a location
of'a template in the test array. In receiving the neural inputs
into a template neural network to generate output neurons, the
neural input is fed forward to the output neurons through
delayed connections. Further, as an example, the test array
can be a test image.

In another aspect, the system performs additional opera-
tions of generating a library of templates, where each tem-
plate is a three-dimensional array, with each pixel in the array
representing a value at a particular x, y, and z coordinate along
X, y, and z axes. Thus, the library of templates is composed of
a plurality of three-dimensional templates. Each column of
pixels along one axis is converted into a neural input. Further,
adelayed connection is established between each neural input
and output neurons to generate the template neural network.

In yet another aspect, establishing a delayed connection
further comprises operations of converting each pixel of each
three-dimensional array through all layers into a neural index;
converting an xX-axis into a time axis such that pixels with
different x-coordinates represent different events in time;
identifying an x-location of a pixel or set of pixels in the
template with the largest x-value (the x-location with the
largest x-value is a reference point that corresponds to a latest
time point when pixels of the template are entered into the
template neural network); and setting a connection delay
between each input neuron and output neuron based on a time
gap between the x-location of each input neuron and the
reference point.

In another aspect, evaluating the output neurons further
comprises operations of comparing values of the output neu-
rons against a threshold, such that if an output neuron reaches
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its threshold, the output neuron fires, indicating a match
between the template and test array; obtaining an x-axis loca-
tion as a time-step in which the output neuron fired; and
obtaining a y-axis location from an index of the output neu-
ron.

Finally, the present invention also includes a method and
computer program product. The computer program product
includes instructions encoded on a non-transitory computer-
readable medium for causing a processor to perform the
operations listed herein, while the method comprises an act of
causing a processor to execute instructions on a memory to
perform the listed operations.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present inven-
tion will be apparent from the following detailed descriptions
of the various aspects of the invention in conjunction with
reference to the following drawings, where:

FIG. 1 is a flowchart showing a process of leaf-cell local-
ization within a test image of an integrated circuit;

FIG. 2 is a flowchart showing a process for converting an
array of pixels along the depth of an image into an activation
of a single neuron;

FIG. 3 is a flowchart showing a process for storing a new
image template;

FIG. 4 is an illustration depicting a feed forward process
for template matching;

FIG. 5 is a block diagram depicting the components of a
system embodying the invention; and

FIG. 6 is an illustration of a computer program product
embodying the present invent ion.

DETAILED DESCRIPTION

The present invention relates to a pattern matching system
and, more particularly, to a system for finding a matching 3D
template in a stack of images. The following description is
presented to enable one of ordinary skill in the art to make and
use the invention and to incorporate it in the context of par-
ticular applications. Various modifications, as well as a vari-
ety of uses in different applications will be readily apparent to
those skilled in the art, and the general principles defined
herein may be applied to a wide range of aspects. Thus, the
present invention is not intended to be limited to the aspects
presented, but is to be accorded the widest scope consistent
with the principles and novel features disclosed herein.

In the following detailed description, numerous specific
details are set forth in order to provide a more thorough
understanding of the present invention. However, it will be
apparent to one skilled in the art that the present invention
may be practiced without necessarily being limited to these
specific details. In other instances, well-known structures and
devices are show-n in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.

The reader’s attention is directed to all papers and docu-
ments which are filed concurrently with this specification and
which are open to public inspection with this specification,
and the contents of all. such papers and documents are incor-
porated herein by reference. All the features disclosed in this
specification, (including any accompanying claims, abstract,
and drawings) may be replaced by alternative features serving
the same, equivalent or similar purpose, unless expressly
stated otherwise. Thus, unless expressly stated otherwise,
each feature disclosed is one example only of a generic series
of equivalent or similar features,
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Furthermore, any element in a claim that does not explic-
itly state “means for” performing a specified function, or
“step for” performing a specific function, is not to be inter-
preted as a “means” or “step” clause as specified in 35 U.S.C.
Section 112, Paragraph 6. In particular, the use of “step of”” or
“act of” in the claims herein is not intended to invoke the
provisions of 35 U.S.C. 112, Paragraph 6.

Before describing the invention in detail, first a description
of the various principal aspects of the present invention is
provided. Subsequently, an introduction provides the reader
with a general understanding of the present invention, Finally,
specific details of the present invention are provided to give an
understanding of the specific aspects.

(1) Principal Aspects

The present invention has three “principal” aspects. The
first is a pattern matching system. The system is typically in
the form of a computer system operating software or in the
form of a “hard-coded” instruction set. This system may be
incorporated into a wide variety of devices that provide dif-
ferent functionalities. The second principal aspect is a
method, typically in the form of software, operated using a
data processing system (computer). The third principal aspect
is a computer program product. The computer program prod-
uct generally represents computer-readable instructions
stored on a non-transitory computer-readable medium such
as an optical storage device, e.g., a compact disc (CD) or
digital versatile disc (DVD), or a magnetic storage device
such as a floppy disk or magnetic tape. Other, non-limiting
examples of computer-readable media include hard disks,
read-only memory (ROM), and flash-type memories. These
aspects will be described in more detail below.

(2) Introduction

The present invention provides a method for a quick search
of 3D image templates in stacks of images, Image template
matching analyzes two images to find the location of a tem-
plate image within a test image, where the test image is larger
than the template. A unique aspect of the invention is that it
processes a whole stack of images, column-by-column, and
feeds one column at a time into a neural network (such as the
neural network described by U.S. patent application Ser. No.
13/358,095, filed on Jan. 25, 2012, and entitled, “Neural
Network Device with Engineered Delays for Pattern Storage
and Matching,” which is incorporated by reference as though
fully set forth herein).

The neural network allows for setting of connection delays
to store patterns. At each time interval, an input-neuron col-
umn is mapped into the neural network creating delays
towards an output neuron. As the input columns are fed into
the network, the output neuron is constantly updated. The
value of the output neuron is monitored and compared against
a threshold. Once the threshold value has been reached, a
positive recognition is achieved and the process continues.
This single path through the network substantially increases
the matching speed. The neural network described in U.S.
patent application Ser. No. 13/358,095 is adapted in the
present invention to allow for 3D template matching. A fur-
ther novel component involves the encoding of the pixels
through all stacks at each image location. Each stack of pixels
is encoded into a single value that corresponds to an input
neuron of the neural network. This encoding results in sparse
connections, which improves speed.

As such, a result of the present invention is that it improves
the speed for 3D pattern matching in digital data. The inven-
tion focuses on exact pattern matching and localization,
which is distinct from approximate localization through itera-
tive methods. Compared to the state of the art in exact pattern
matching, an advantage of the invention is a substantial
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improvement in computation speed. For 3D patterns, the
improvement can be two orders of magnitude. Thus, this
invention is particularly suited for searching circuit “leat-
cells”, root-cells and functions in large integrated circuit (IC)
layouts. It should be noted that the term leaf-cell as used
herein generally refers to the smallest base cell or component
of'a structure. The matching process is ideally suited to com-
plex ICs with uniform and repeatable layout patterns. Identi-
fying leaf cells in IC data is a necessary component for
reverse-engineering circuits and for malicious circuit detec-
tion. These leaf cells are standardized and thus suitable for
exact matching. Moreover, IC layouts are stacks of 2D images
to which the invention particularly applies. Specific details
regarding the present invention are provided below.

(3) Specific Details of the Invention

As noted above, a purpose of this invention is to find a 3D
template in a stack of 2D images. While any suitable images
can be used, a non-limiting example of a stack of images
includes layers of circuits in a chip. The invention employs a
neural network to store templates and later recall them during
matching with a test image. In matching, a test image is sliced
into columns through all layers, and one column at a time is
fed into the network. Thus, the image is converted in a time
sequence of slices: the x-axis becomes the time axis. The
network includes sets of input neurons and output neurons.
The input neurons can hold the content of a whole column, of
the test image. These input neurons feed into the output neu-
rons through neural connections. When storing templates,
connections are formed between input and output neurons. In
recall, an activated output neuron indicates the template
found and its location within the test image.

For further understanding, FIG. 1 is a flow chart depicting
the method of the present invention as applied to identifying
and locating circuit leaf-cells within an IC chip. It should be
understood that ICs are used for illustrative purposes only as
the present invention is not intended to be limited to ICs. For
example, instead of ICs, other 3D) data structures may be
used. The main steps as depicted in FIG. I are detailed below.

(3.1) Image Library

Before applying the network for template matching, an
image library 100 of templates (e.g., a library of leaf cells) is
created using any suitable technique. The library is essen-
tially a plurality of three-dimensional templates. For
example, the leaf-cell images may be extracted from X-ray
TIF images, and a 3D binary image data file is then generated
with the height information. It should be understood that the
template library is not limited to representations of images.
For example any two or three-dimensional array can be used
where each entry in the array represents some value at a
particular x, y, and 7 coordinate. As a non-limiting example,
the values stored for each x, y coordinate may represent the
doping concentration at that location, the doping type, the
composition of semiconductor at the x, y, and z location or a
logical value. The logical value may represent that the x, y,
and/or z location is part of a contact or not.

Moreover, the template matching method described herein
allows any D (e.g. 2D, 3D, 4D etc.) level template to be
converted into a neural network, then tested for a match to a
test array by inputting each D level column of the test array
into the template neural network. The final output of the
template neural network is a measure of the match between
the template and test array. An array or test array is any
structure that can be reduced to a multi-dimensional grid or
lattice of numbers. A non-limiting example of such an array
or test array is a 2D image

As noted above, the term leaf-cell as used herein generally
refers to the smallest base cell or component of a structure.
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These base cells (or leat-cells) are used for further design/
layout to create larger blocks (e.g., the integrated circuit). As
a non-limiting example, a leaf cell is a configuration of mul-
tiple logical elements (e.g., AND and OR gates) and this
configuration is fixed, pre-designed, to make the design ofthe
whole chip easier.

(3.2) Conversion of Pixels into Neural Input

In the next step, each template/cell image is converted 102
into neural input. The 3D template is composed of several 2D
layers of binary images (e.g., the metal layers available on the
1C). Foreach position on a layer, a pixel array is extracted that
stretches through all layers.

FIG. 2 is a flow chart illustrating the process of converting
102 an array of pixels 200 into neural input 202. Specifically,
FIG. 2 illustrates a process for converting an array of pixels
200 along the depth of an image into an activation of a single
neuron 202. Each binary pixel combination for an array is
mapped onto a signal neuron, whose index is computed
according to FIG. 2. Thus 2¢ neurons are required to encode
all possible combinations for an array, where d is the number
of layers. In other words, the image consists of d layers. For
storing a template, r is the location of the template within the
test image. If converting pixels from the test image, r=0 and y
is the location within the test image.

Optionally, a neural index of O implies that no input neuron
is activated. Thus, the corresponding location on the template
functions as a wildcard, i.e., the network ignores the pixel
values at the corresponding location within the test image.

In recall (i.e., pattern matching), the pixels within the test
image are converted into a neural input using the same pro-
cess as is performed for a template. Thus, the process depicted
in FIG. 2 applies to both template and test images. Note, in
recall, the process in FIG. 2 is not used for the template
anymore; for the template, the process is used only during
storage.

(3.3) Process of Setting Connection Delays

Referring againto FIG. 1, after the pixels are converted 102
into neural inputs, a process of setting connection delays 104
is performed. To store a template, connections between input
and output neurons are established and the delay of each
connection is set. FIG. 3 is a flow chart illustrating the process
of'setting the connection delays 104. The image template 300
has to be stored 302 for each row of the test image, i.e., for
each position along an image column, but not for each col-
umn. Therefore, FIG. 3 contains a loop over the rows r. For
each image template 300 and row, an output neuron and
connections to this neuron are created.

According to the process in FIG. 2, an array of pixels
through all layers is converted into a neural index. This pro-
cess is repeated for all (x,y) locations in the template. To
compute the connection delays, the x-axis is first converted
into a time axis, i.e., pixels with different x-coordinates rep-
resent different events in time. Second, a process identifies
the x-location of the pixel or set of pixels in the template with
the largest x-coordinate. This location corresponds to the
latest time point when pixels of the template are entered into
the network. This time point serves as a reference point to
compute the connection delays (see also FIG. 4). Finally, the
delay between input neuron and output neuron is set to the
time gap between the x-location of the input neuron and the
above reference point. In addition to setting delays, the
threshold for each output neuron is set to number of (x,y)
locations in the template (optionally, a smaller number may
be chosen as described below).
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(3.4) Feed Forward Input Through the Template Neural
Network and Evaluation of Output Neurons

Referring again to FIG. I, after storing template images, the
network can be used to locate 108 these templates in a test
image 106. The test image 106 is assumed to have the same
number of layers as the templates. This assumption is reason-
able for IC circuits with standardized layouts. If a chip con-
tains several device layers of active electronic components on
top of each other (as in so-called 3D chips), the process can be
applied to each of those device layers separately. Here, the
template thickness has to match the thickness of a device
layer.

Prior to initiating the feed forward process 110, the test
image 106 is converted 112 into neural inputs using the same
process as described above in Section 3.2. Thereafter and as
depicted in FIG. 4, the feed forward process 110 is employed
for template matching.

Specifically, FIG. 4 depicts an example of processing a
neural input through the network The binary pattern 400 of a
leaf'cell 402 is stored in the network (showing only one layer).
When scanning an IC image, the same pattern results in an
activated output neuron 404, because the feed-forward con-
nections are delayed such that they compensate for the tem-
poral sequence of the input

In this example, the test image is sliced into columns (e.g.,
through the z-axis), one for each x-coordinate. Starting from
x=1, the columns are feed into the input neurons of the net-
work, one column at a time. The input neuron’s activation
(depicted as solid circles in FIG. 4) is fed forward, to the
output neurons through delayed connections.

The next step in the process is to evaluate the output neu-
rons (depicted as element 114 in FIG. 1). The output neurons
(one for each template and template location along the y-axis)
accumulate the incoming signals over time. Each incoming
connection adds +1 to the value of the output neuron. At each
time step, the values of the output neurons are compared
against their thresholds. If an output neuron reaches its
threshold, the neuron fires, indicating the observation of a
complete template. Thus, the firing provides the identity of
the template and its location within the test image. The x
location is obtained from the time step when the firing
occurred (i.e., at the corresponding location the template was
observed in full), and the y location is obtained from the index
of the output neuron (since each y location has its own neu-
ron). The process of identification continues until the full test
image is read into the network. Thus, all existing templates
and locations can be extracted from the image in a single run.

Exact matching without false positives is achieved by set-
ting the value of the threshold to the area of the template in the
x-y plane. Optionally, a smaller value may be chosen. This
choiceresults in the detection of partially complete templates.
Such choice is of advantage if the test image is noisy and
therefore an exact match with the template cannot be
expected.

A block diagram depicting an example of a system (i.e.,
computer system 500) embodying the present invention is
provided in FIG. 5. The computer system 500 is configured to
perform calculations, processes, operations, and/or functions
associated with a program or algorithm. In one aspect, certain
processes and steps discussed herein are realized as a series of
instructions (e.g., software program) that reside within com-
puter readable memory units and are executed by one or more
processors of the computer system 500. When executed, the
instructions cause the computer system 500 to perform spe-
cific actions and exhibit specific behavior, such as described
herein.
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The computer system 500 may include an address/data bus
502 that is configured to communicate information. Addition-
ally, one or more data processing units, such as a processor
504 (or processors), are coupled with the address/data bus
502. The processor 504 is configured to process information
and instructions. In an aspect, the processor 504 is a micro-
processor. Alternatively, the processor 504 may be a different
type of processor such as a parallel processor, or a field
programmable gate array,

The computer system 500 is configured to utilize one or
more data storage units. The computer system 500 may
include a volatile memory unit 506 (e.g., random access
memory (“RAM”), static RAM, dynamic RAM, etc.) coupled
with the address/data bus 502, wherein a volatile memory unit
506 is configured to store information and instructions for the
processor 504. The computer system 500 further may include
a non-volatile memory unit 508 (e.g., read-only memory
(“ROM”), programmable ROM (“PROM?”), erasable pro-
grammable ROM (“EEPROM”), electrically erasable pro-
grammable ROM “EEPROM”), flash memory, etc.) coupled
with the address/data bus 502, wherein the non-volatile
memory unit 508 is configured to store static information and
instructions for the processor 504. Alternatively, the com-
puter system 500 may execute instructions retrieved from an
online data storage unit such as in “Cloud” computing. In an
aspect, the computer system 500 also may include one or
more interfaces, such as an interface 510, coupled with the
address/data bus 502. The one or more interfaces are config-
ured to enable the computer system 500 to interface with
other electronic devices and computer systems. The commu-
nication interfaces implemented by the one or more interfaces
may include wireline (e.g., serial cables, modems, network
adaptors, etc.) and/or wireless (e.g., wireless modems, wire-
less network adaptors, etc.) communication technology.

In one aspect, the computer system 500 may include an
input device 512 coupled with the address/data bus 502,
wherein the input device 512 is configured to communicate
information and command selections to the processor 500. In
accordance with one aspect, the input device 512 is an alpha-
numeric input device, such as a keyboard, that may include
alphanumeric and/or function keys. Alternatively, the input
device 512 may be an input device other than an alphanumeric
input device. In an aspect, the computer system 500 may
include a cursor control device 514 coupled with the address/
data bus 502, wherein the cursor control device 514 is con-
figured to communicate user input information and/or com-
mand selections to the processor 500. In an aspect, the cursor
control device 514 is implemented using a device such as a
mouse, a track-ball, a track-pad, an optical tracking device, or
a touch screen. The foregoing notwithstanding, in an aspect,
the cursor control device 514 is directed and/or activated via
input from the input device 512, such as in response to the use
of special keys and key sequence commands associated with
the input device 512. In an alternative aspect, the cursor
control device 514 is configured to be directed or guided by
voice commands.

In an aspect, the computer system 500 further may include
one or more optional computer usable data storage devices,
such as a storage device 516, coupled with the address/data
bus 502. The storage device 516 is configured to store infor-
mation and/or computer executable instructions. In one
aspect, the storage device 516 is a storage device such as a
magnetic or optical disk drive (e.g., hard disk drive (“HI-
DD”), floppy diskette, compact disk read only memory (“CD-
ROM™), digital versatile disk (“DVD”)). Pursuant to one
aspect, a display device 518 is coupled with the address/data
bus 502, wherein the display device 518 is configured to
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display video and/or graphics. In an aspect, the display device
518 may include a cathode ray tube (“CRT”), liquid crystal
display (“LCD”), field emission display (“FED”), plasma
display, or any other display device suitable for displaying
video and/or graphic images and alphanumeric characters
recognizable to a user.

The computer system 500 presented herein is an example
computing environment in accordance with an aspect. How-
ever, the non-limiting example of the computer system 500 is
not strictly limited to being a computer system. For example,
an aspect provides that the computer system 500 represents a
type of data processing analysis that may be used in accor-
dance with various aspects described herein. Moreover, other
computing systems may also be implemented. Indeed, the
spiritand scope of the present technology is not limited to any
single data processing environment. Thus, in an aspect, one or
more operations of various aspects of the present technology
are controlled or implemented using computer-executable
instructions, such as program modules, being executed by a
computer. In one implementation, such program modules
include routines, programs, objects, components and/or data
structures that are configured to perform particular tasks or
implement particular abstract data types. In addition, an
aspect provides that one or more aspects of the present tech-
nology are implemented by utilizing one or more distributed
computing environments, such as where tasks are performed
by remote processing devices that are linked through a com-
munications network, or such as where various program mod-
ules are located in both local and remote computer-storage
media including memory-storage devices.

An illustrative diagram of a computer program product
(i.e., storage device) embodying the present invention is
depicted in FIG. 6. The computer program product is depicted
as floppy disk 600 or an optical disk 602 such as a CD or
DVD. However, as mentioned previously, the computer pro-
gram product generally represents computer-readable
instructions stored on any compatible non-transitory com-
puter-readable medium. The term “instructions” as used with
respectto this invention generally indicates a set of operations
to be performed on a computer, and may represent pieces of a
whole program or individual, separable, software modules.
Non-limiting examples of “instruction” include computer
program code (source or object code) and “hard-coded” elec-
tronics (i.e. computer operations coded into a computer chip).
The “instruction” may be stored in the memory of a computer
or on a computer-readable medium such as a floppy disk, a
CD-ROM, and a flash drive. In either event, the instructions
are encoded on a non-transitory computer-readable medium,

The computational complexity of the matching process
with the present invention outperforms the complexity of
computing cross-correlation. In the present invention, this
complexity scales with the area (in x-y plane) of the test
image times the average number of connections for each input
neuron. The encoding of the pixels along the depth of the
image into a single neuron blows up the number of input
neurons and results in a very sparse connectivity. This spar-
sity greatly reduces the average number of connection and
therefore improves the overall speed. In contrast, the compu-
tational complexity of NCC for each template scales with the
volume of the test image times the volume of the template.
Thus, particularly, for images with many layers a huge
improvement in speed can be expected. Furthermore, the
invention requires only memory storage and lookup, integer
additions, and integer comparisons. Thus, a very efficient
embodiment is possible, particularly, in specialized hard-
ware, like field-programmable gate arrays (FPGA). More-
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over, the neural connections can be computed in parallel,
which would be very suitable for an implementation on a
graphics chip (GPU).

What is claimed is:

1. A system for pattern matching, the system comprising:

one or more processors and a memory, the memory having

instructions encoded thereon such that upon execution

of the instructions, the one or more processors perform

operations of:

converting a test array into neural inputs;

receiving the neural inputs into a template neural net-
work to generate output neurons; and

evaluating the output neurons to identify a location of a
template in the test array.

2. The system as set forth in claim 1, wherein the operations
further comprise:

generating a library of templates, where each template is a

three-dimensional array, with each pixel in the array
representing a value at a particular x, y, and z coordinate
along X, y, and z axes, such that the library of templates
is composed of a plurality of three-dimensional tem-
plates;

converting each column of pixels along one axis into a

neural input; and

establishing a delayed connection between each neural

input and output neurons to generate the template neural
network.

3. The system as set forth in claim 2, wherein establishing
a delayed connection further comprises operations of:

converting each pixel of each three-dimensional array

through all layers into a neural index;

converting an X-axis into a time axis such that pixels with

different x-coordinates represent different events in
time;
identifying an x-location of a pixel or set of pixels in the
template with the largest x-value, wherein the x-location
with the largest x-value is a reference point that corre-
sponds to a latest time point when pixels of the template
are entered into the template neural network; and

setting a connection delay between each input neuron and
output neuron based on a time gap between the x-loca-
tion of each input neuron and the reference point.

4. The system as set forth in claim 3, wherein evaluating the
output neurons further comprises operations of:

comparing values of the output neurons against a thresh-

old, such that if an output neuron reaches its threshold,
the output neuron fires, indicating a match between the
template and test array;

obtaining an x-axis location as a time-step in which the

output neuron fired; and

obtaining a y-axis location from an index of the output

neuron.

5. The system as set forth in claim 4, wherein in receiving
the neural inputs into a template neural network to generate
output neurons, the neural input is fed forward to the output
neurons through delayed connections.

6. The system as set forth in claim 1, wherein evaluating the
output neurons further comprises operations of:

comparing values of the output neurons against a thresh-

old, such that if an output neuron reaches its threshold,
the output neuron fires, indicating a match between the
template and test array;

obtaining an x-axis location as a time-step in which the

output neuron fired; and

obtaining a y-axis location from an index of the output

neuron.
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7. The system as set forth in claim 1, wherein in receiving
the neural inputs into a template neural network to generate
output neurons, the neural input is fed forward to the output
neurons through delayed connections.

8. The system as set forth in claim 1, wherein the test array
is a test image.

9. A computer implemented method for pattern matching
using one or more processors, the method comprising acts of:

converting, with the one or more processors, a test array

into neural inputs;

receiving the neural inputs into a template neural network

to generate output neurons; and

evaluating, with the one or more processors, the output

neurons to identify a location of a template in the test
array.

10. The method as set forth in claim 9, further comprising
acts of:

generating a library of templates, where each template is a

three-dimensional array, with each pixel in the array
representing a value at a particular x, y, and z coordinate
along X, y, and z axes, such that the library of templates
is composed of a plurality of three-dimensional tem-
plates;

converting each column of pixels along one axis into a

neural input; and

establishing a delayed connection between each neural

input and output neurons to generate the template neural
network.

11. The method as set forth in claim 10, wherein establish-
ing a delayed connection further comprises acts of:

converting each pixel of each three-dimensional array

through all layers into a neural index;

converting an x-axis into a time axis such that pixels with

different x-coordinates represent different events in
time;
identifying an x-location of a pixel or set of pixels in the
template with the largest x-value, wherein the x-location
with the largest x-value is a reference point that corre-
sponds to a latest time point when pixels of the template
are entered into the template neural network; and

setting a connection delay between each input neuron and
output neuron based on a time gap between the x-loca-
tion of each input neuron and the reference point.

12. The method as set forth in claim 11, wherein evaluating
the output neurons further comprises acts of:

comparing values of the output neurons against a thresh-

old, such that if an output neuron reaches its threshold,
the output neuron fires, indicating a match between the
template and test array;

obtaining an x-axis location as a time-step in which the

output neuron fired; and

obtaining a y-axis location from an index of the output

neuron.

13. The method as set forth in claim 12, wherein in receiv-
ing the neural inputs into a template neural network to gen-
erate output neurons, the neural input is fed forward to the
output neurons through delayed connections.

14. The method as set forth in claim 9, wherein evaluating
the output neurons further comprises acts of:

comparing values of the output neurons against a thresh-

old, such that if an output neuron reaches its threshold,
the output neuron fires, indicating a match between the
template and test array:

obtaining an x-axis location as a time-step in which the

output neuron fired; and

obtaining a y-axis location from an index of the output

neuron.
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15. The method as set forth in claim 9, wherein in receiving
the neural inputs into a template neural network to generate
output neurons, the neural input is fed forward to the output
neurons through delayed connections.

5 16. The method as set forth in claim 9, wherein the test
array is a test image.

17. A computer program product for pattern matching, the
computer program product comprising computer-readable
instructions stored on a non-transitory computer-readable
medium that are executable by a computer having a processor
for causing the processor to perform operations of:

converting a test array into neural inputs;

receiving the neural inputs into a template neural network

to generate output neurons; and

evaluating the output neurons to identify a location of a

template in the test array.

18. The computer program product as set forth in claim 17,
further comprising instructions for causing the processor to
perform operations of:

generating a library of templates, where each template is a

three-dimensional array, with each pixel in the array
representing a value at a particular x, y, and z coordinate
along X, y, and z axes, such that the library of templates
is composed of a plurality of three-dimensional tem-
plates;

converting each column of pixels along one axis into a

neural input; and

establishing a delayed connection between each neural

input and output neurons to generate the template neural

network.

19. The computer program product as set forth in claim 18,
wherein establishing a delayed connection further comprises
operations of:

converting each pixel of each three-dimensional array

through all layers into a neural index;

converting an X-axis into a time axis such that pixels with

different x-coordinates represent different events in

time;

identifying an x-location of a pixel or set of pixels in the

template with the largest x-value, wherein the x-location

with the largest x-value is a reference point that corre-
sponds to a latest time point when pixels of the template
are entered into the template neural network; and

setting a connection delay between each input neuron and
output neuron based on a time gap between the x-loca-
tion of each input neuron and the reference point.

20. The computer program product as set forth in claim 19,
wherein evaluating the output neurons further comprises
operations of:

comparing values of the output neurons against a thresh-

old, such that if an output neuron reaches its threshold,

the output neuron fires, indicating a match between the
template and test array;

obtaining an x-axis location as a time-step in which the

output neuron fired; and

obtaining a y-axis location from an index of the output

neuron.

21. The computer program product as set forth in claim 20,
wherein in receiving the neural inputs into a template neural
network to generate output neurons, the neural input is fed
forward to the output neurons through delayed connections.

22. The computer program product as set forth in claim 17,
wherein evaluating the output neurons further comprises
operations of:
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comparing values of the output neurons against a thresh-
old, such that if an output neuron reaches its threshold,
the output neuron fires, indicating a match between the
template and test array;

obtaining an x-axis location as a time-step in which the 5

output neuron fired; and

obtaining a y-axis location from an index of the output

neuron.

23. The computer program product as set firth in claim 17,
wherein in receiving the neural inputs into a template neural 10
network to generate output neurons, the neural input is fed
forward to the output neurons through delayed connections.

24. The computer program product as set forth in claim 17,
wherein the test array is a test image.
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